

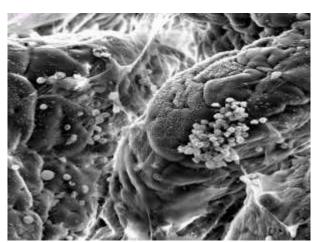
FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN U N A M

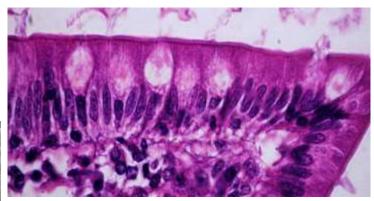
TEMAS A TRATAR

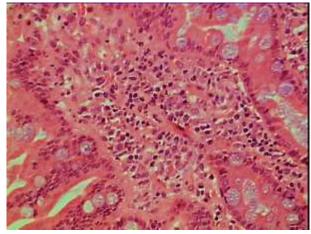
- 1.- Homeostasis
- 2.- Desarrollo Intestinal
- 3.- Integridad Intestinal (resistencia-inmunidad)



Adaptado y redibujado de Riis y Jokobsen, 1969 Hill, 1971, Simon y Versteeg, 1989 y Herpol y Van Grembergen, 1967


4.- Inmunonutrición


HOMEOSTASIS = SALUD INTESTINAL


Es el conjunto de fenómenos de autorregulación que llevan al mantenimiento de las propiedades morfofisiológicas en relación a la composición del medio interno gastrointestinal.

COMO SE LOGRA ÉSTE EQUILIBRIO

ADECUADO DESARROLLO DEL TRACTO GASTROINTESTINAL (TGI)

Corazón Hígado Proventrículo Molleja Intestino Delgado

En el embrión los lípidos del vitelo están compuestos principalmente por:

- A) TRIGLICÉRIDOS (63%) y
- B) FOSFOLÍPIDOS (20%) y son su principal fuente de energía.

Se estimula la absorción del SV al ser estimulado por el consumo de alimento y el crecimiento de tejidos.

Utilización de la Yema

Mejora la actividad TIROIDEA

Favorece el crecimiento MUSCULAR

Favorece absorción de Ac's

Incrementa el # de Céls. LINFOIDES

Mejora la altura de VELLOSIDADES

Mejora VELOCIDAD de migración de enterocitos

Establecimiento Microbiota

24 hrs

El tiempo que transcurre desde el nacimiento hasta que los pollitos tienen acceso al agua y alimento es muy variado pudiendo ser de 10 a 48 horas

Después de la tercera semana de edad, la flora intestinal se puede considerar como estable.

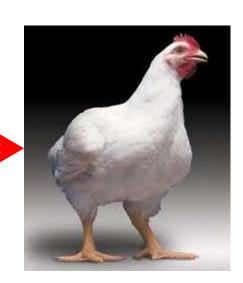
(Garriga y col. 1998).

MICROFLORA EN LOS DISTINTOS TRAMOS INTESTINALES

Tabla de diversidad bacteriana del tracto gastrointestinal de pollos, en función de la variación del pH y el tiempo medio de retención, en minutos (TMR) de la inigesta en la fase solida.

Sección intestinal	Contenido	o digestivo	Bacterias
pH TMR		TMR	Dacterias
Buche	4,5	31-41	Lactobacillus +, Estreptococcus+ E. coli-, Staphylococcus+,
Proventrículo	4,4-4,8	39	Estreptococcus ⁺ , coliformes ⁻
Molleja	2,6	33	Lactobacillus +
Duodeno	5,7-6	5-10	Coliformes ⁻
Yeyuno	5,8	71-84	Clostridium +
Íleon	6,3	90-97	coliformes-, Eubacterium+, Bacteroides-, Staphylococcus+, Estreptococcus+ Lactobacillus +
Ciegos	5,7	119	Clostridium + ,Bacteroides-, Eubacterium+, Bacillus, Fusobacterium -, Bofidobacteria -

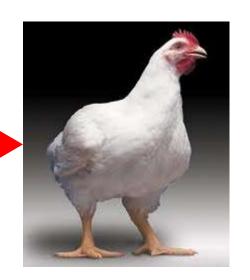
Choque (2008).


INTEGRIDAD INTESTINAL (defensa – inmunidad)

Como el desarrollo completo ESTRUCTURAL (macroscópico y microscópico) y FUNCIONAL (fisiológica-defensa-inmune)
(Dr. H Cervantes, 2011)

MÁXIMO POTENCIAL

GENÉTICO

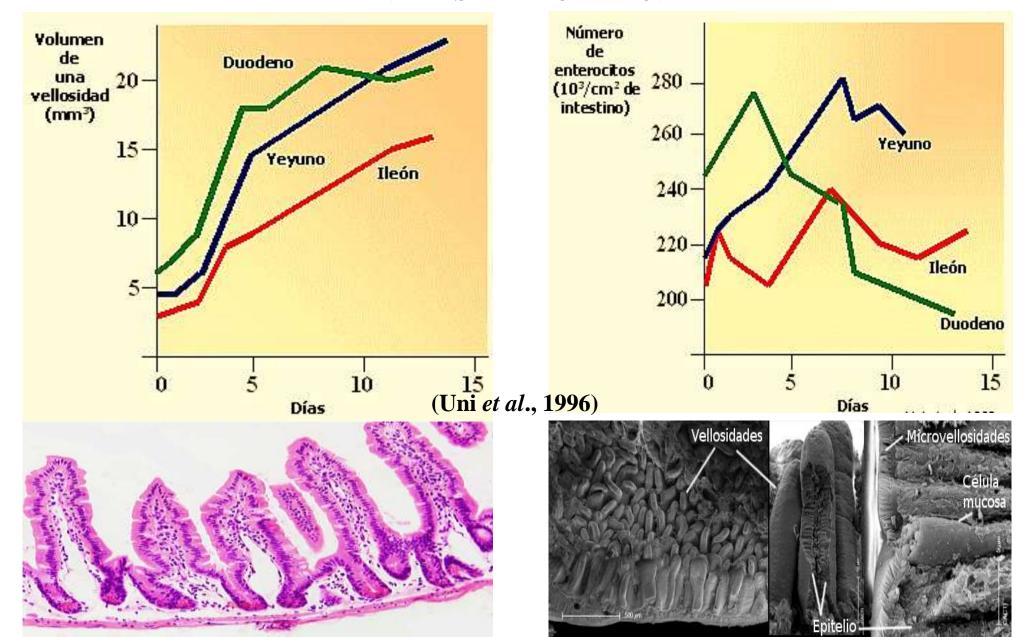


INTEGRIDAD INTESTINAL

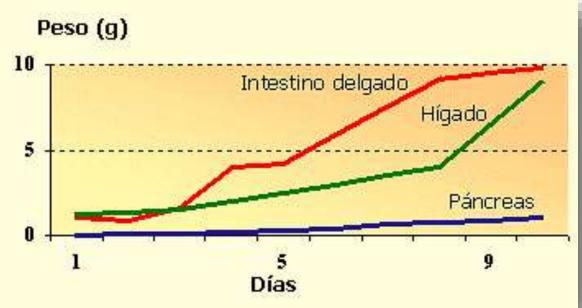
MÁXIMO POTENCIAL

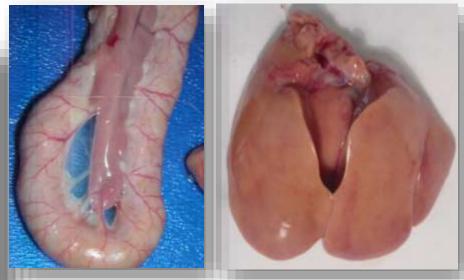
GENÉTICO

Estimular un desarrollo temprano, íntegro y completo del aparato gastrointestinal

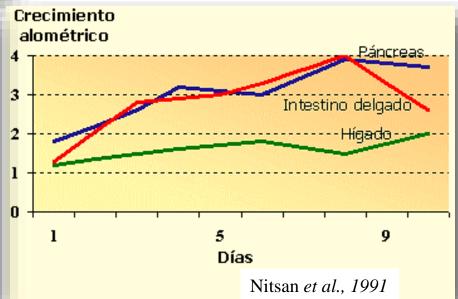


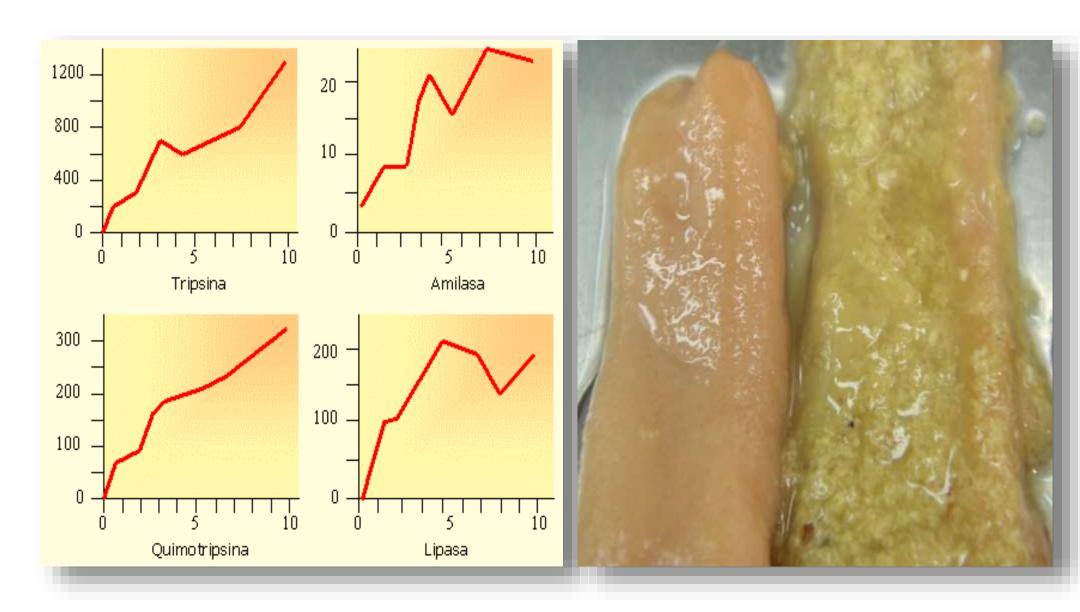
PARÁMETROS GASTROINTESTINALES CONSIDERADOS NORMALES

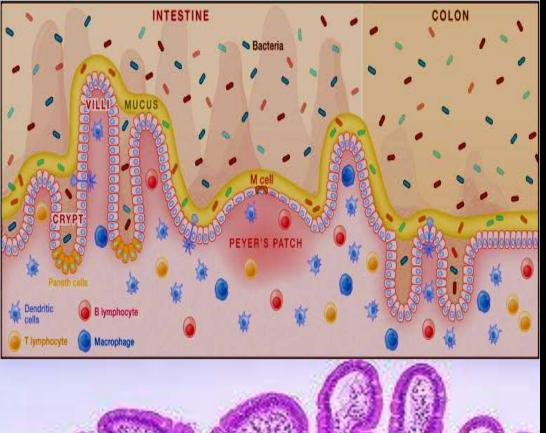

(Adaptado de Van der Klis and Jansman, 2002)

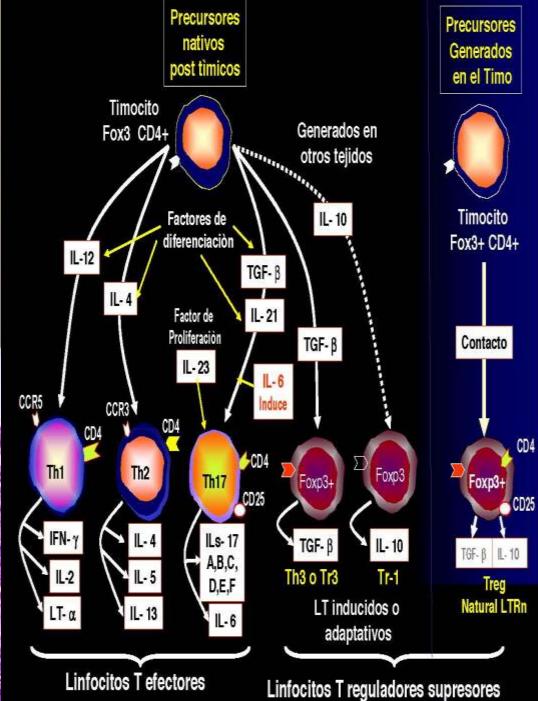

Variable	Media	Error Estándar
DIGESTIÓN		
Actividad enzimática en la luz		
Actividad enzimática en el borde de cepillos (punta de la vellosidad)		
Sucrasa (U/g)	156	35
Maltasa (U/g)	944	224
Alcalino fosfatasa (U/g)	116	24
Glutamiltrasferasa (U/g)	1,790	320
ABSORCIÓN		
Morfometría		
Altura vellosidades Yeyuno (mm)	612	61
Profundidad criptas Yeyuno (mm)	188	25
Anchura de la vellosidad Yeyuno (mm)	111	16
Enterocitos por vellosidad (#)	848	189
Enterocitos por mm de vellosidad (#)	1.34	0.13
OTROS		
Producción de mucina (U/g quimo)	15	
Tiempo de retención Yeyuno (min)	71 – 84	
Sales biliares concentración (mmol/g)	11.7 – 14.4	

VOLUMEN DE VELLOSIDADES Y Nº DE ENTEROCITOS LOS PRIMEROS 10 DÍAS DEL POLLITO.

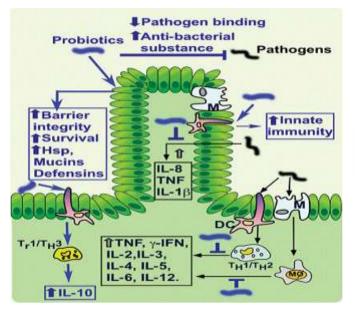

Evolución del peso del sistema digestivo los primeros 10 días

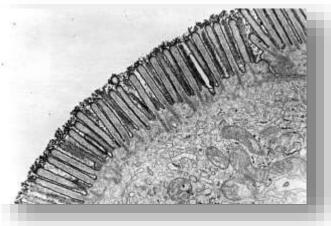


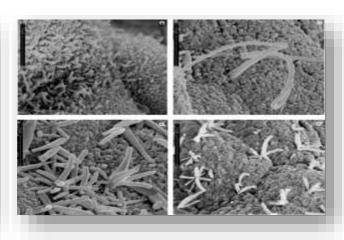

Crecimiento alométrico páncreas, hígado e intestino delgado los primeros 10 días.



ACTIVIDADES ENZIMÁTICAS (unds./kg peso vivo) EN EL CONTENIDO INTESTINAL DEL POLLO LOS PRIMEROS DIEZ DÍAS DE VIDA.

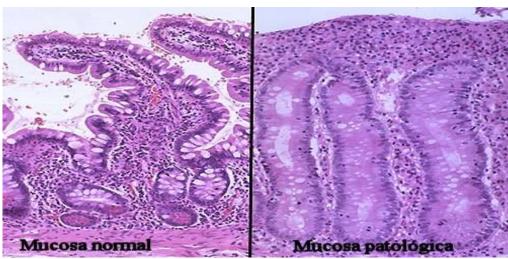



PARA QUÉ CUIDAR LA INTEGRIDAD INTESTINAL


Favorecer la DIGESTIÓN

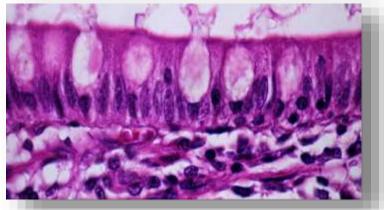
Favorecer la DEFENSA - INMUNIDAD

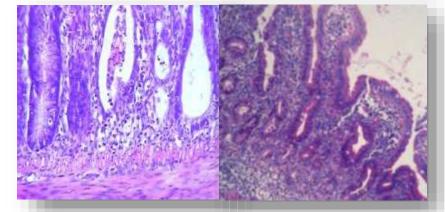
Favorecer la ABSORCIÓN



Regular la MICROBIOTA

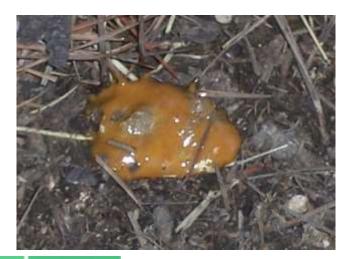
El TGI es el órgano que necesita mayor aporte de nutrientes y recibe entre un 23 y un 36% del total de energía y entre el 23 y el 38% de toda la proteína absorbida por el organismo (Summers, 1991)

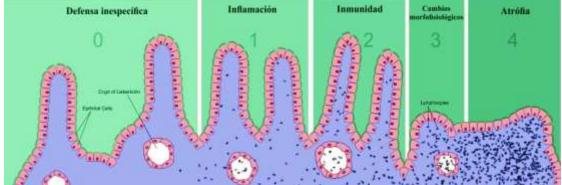



DISBACTERIOSIS

Altera BARRERAS MORFOFISIOLÓGICAS

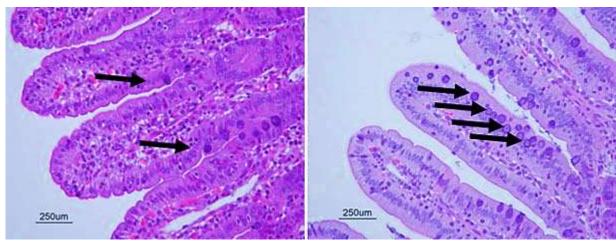
INFECCIÓN


Altera las respuesta de DEFENSA INESPECÍFICA-ESPECÍFICA


ENTERITIS

- 1) Diarrea osmótica
- 2) Diarrea secretora
- 3) Diarrea inflamatoria
- 4) Diarrea por trastornos de la motilidad

Diarrea


CAUSAS MAS COMUNES QUE ALTERAN LA INTEGRIDAD INTESTINAL

□Síndrome de mala absorción
□Reovirosis
□Ascaridiasis
□Cestodosis
□Colibacilosis enteropatógena
□Salmonelosis
□Micotoxicosis
□Grasas rancias
□Aminas biogénicas
□Harinas de soya mal procesadas

□Agua de mala calidad

Dr. H. Cervantes, 2011

VITAMINAS

EFECTO DE LA UTILIZACIÓN DE UN SUPLEMENTO NUTRICIONAL EN ASPECTOS METABÓLICOS Y DE SALUD EN LAS AVES DE INICIO DE PONEDORAS

Esperanza Guerrero

Revista Cubana de Ciencias Veterinarias • Vol. 31 Nº 1-2/2008

Se utilizaron 1 000 pollitas de un día de nacidas de la raza Leghorn Blanca, líneas L-33; distribuidas en dos grupos de 500 animales cada uno. El suplemento nutricional para el inicio (SNPI).

Componentes	Cantidad
Grano de trigo molido	1 500 g
Glucosa al 5%	250 ml
Huevos (deshidratados)	3 kg
Vitamina C	1 g
Vitamina A	5 000 UI
Complejo B oral. Cada 100 ml se aportan: - clorhidrato de tiamina, 0,625 g - rivoflavina 5 fosfato, 0,031 g - clorhidrato de peridoxina, 0,104 g - pantotenato de calcio, 0,312 g - nicotinamida, 2,650 g	10 ml

Efecto de la dieta sobre el peso (g) de diversos órganos

Dogo (a)	Tratamientos		Edad en días	
Peso (g)	Tratamientos	7	14	21
Proventrículo	T1	0,406	0,610	1,46
	T2	0,740	0,784	1,58
	ES±**	0,0034	0,006	0,008
Molleja	T1	4,292	5,252	7,22
	T2	5,024	6,128	9,59
	ES±**	0,094	0,06	0,06
Hígado	T1	2,040	2,914	3,71
	T2	2,596	3,276	5,49
	ES±**	0,0049	0,15	0,05

T1: Control

T2: Dieta

** Indica diferencia estadística significativa (p<0.01)

Efecto de la dieta sobre el desarrollo del aparato gastrointestinal

T1: Control T2: Dieta

Edad		Tracto Intestinal Completo		
(días)	Tratamientos	Longitud (cm)	Peso (g)	
	T1	65,394	6,872	
7	T2	67,828	7,024	
	ES±	0,05	0,07	
	T1	72,908	7,100	
14	T2	74,302	7,724	
	ES±	0,40	0,17	
	T1	80,66	10,59	
21	T2	90,20	12,99	
	ES±**	0,5	0,1	

^{**} Indica diferencia estadística significativa (p<0.01)

Efecto de la dieta sobre el desarrollo de órganos linfoides

T1: Control T2: Dieta

Poso (a)	Tratamientos	Edad en días		
Peso (g)	Tratamientos	7	14	21
Bazo	T1	0,034	0,056	0,25
	T2	0,078	0,134	0,50
	ES±**	0,0017	0,002	0,018
Peso de la Bursa	T1	0,058	0,098	0,49
	T2	0,228	0,276	0,94
	ES±**	0,0044	0,007	0,04
Largo de la	T1	0,652	0,92	1,208
Bursa	T2	0,844	0,97	1,298
(cm)	ES±**	0,011	0,12	0,20

** Indica diferencia estadística significativa (p<0.01)

Concentración proteínas plasmáticas (g / 100 ml)

Tratamientos	Proteínas totales	Albúmina	Globulinas
T1	5,8	4,6	1,2
T2	6,3	4,9	1,4

Tendencia central de anticuerpos HI y porcentaje de Reactores a los 7 días

	Media		Reactores
Tratamientos	Log	Antilog	(%)
T1	3,7	13,0	94
T2	3,9	14,9	100

Efecto de mezclas de ácidos orgánicos suministradas en el agua de bebida sobre las variables productivas, la bioquímica sanguínea y la respuesta inmune del pollo de engorda

Marín-Flamand E, Méndez-Albores A, Del Río-García JC

METODOLOGÍA

300 pollos Ross-308 de 1 día de edad (3 repeticiones) 42 días

Agua y alimento "ad libitum"

NRC, 1994

Grupo	Tratamientos	рН
1	Mezcla 1 (ascórbico-cítrico-málico)*	2.68
2	Mezcla 2 (ascórbico-sórbico-málico)*	2.58
3	Mezcla 3 (ascórbico-tartárico-málico)*	2.73
4	Control (agua de bebida sin acidificar)	7.19

^{* 0.5% (}p/v)

RESULTADOS

Efecto de las mezclas de AO sobre los parámetros productivos y la tasa de supervivencia en el pollo de engorda.

		Tratamiento		
Parámetro	Control	Mezcla 1	Mezcla 2	Mezcla 3
PVC (g)	2239.62 ± 29.15^a	2240.71 ± 37.24^{a}	2239.04 ± 37.00^{a}	2236.43 ± 35.01a
CA (g/ave/d)	107.12 ± 3.1a	96.19 ± 2.3^{b}	98.27 ± 2.2^{b}	97.49 ± 2.5 ^b
ICA	1.991 ± 0.063 ^a	1.803 ± 0.037 ^b	1.860 ± 0.028^{c}	1.831 ± 0.083°
TS (%)	90.66 ^a	96.00 ^b	94.66 ^c	93.33 ^c

Media + error estándar

Medias con la misma letra en la misma línea no son significativamente diferentes (Dunnet > 0.05)

PVC, peso vivo corporal; CA, consumo de alimento; ICA, índice de conversión alimenticia; TS, tasa de supervivencia.

Efecto de las mezclas de AO sobre algunos parámetros sanguíneos y la respuesta inmune en el pollo de engorda

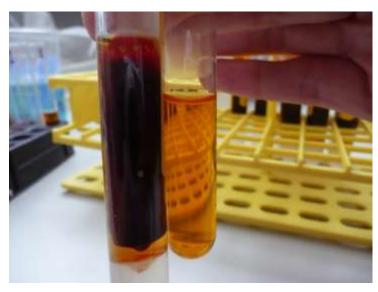
		Tratamiento		
Parámetro	Control	Mezcla 1	Mezcla 2	Mezcla 3
Hematocrito (%)	33.83 ± 2.12^{a}	31.12 ± 3.99^{a}	32.00 ± 2.47^{a}	$33.25~\pm~2.50^{a}$
Proteína total (g/L)	30.28 ± 3.03^{a}	31.18 ± 3.19^{a}	30.46 ± 3.35^{a}	$28.91~\pm~5.28^{a}$
Albúmina (g/L)	11.29 ± 3.54^{a}	13.97 ± 3.70^{a}	12.33 ± 3.22^{a}	12.69 ± 3.53^{a}
GGT (UI/L)	$46.50\ \pm\ 4.56^{a}$	44.29 ± 3.48^{a}	43.00 ± 2.48^{a}	47.44 ± 2.56^{a}
AST (UI/L)	77.24 ± 4.87^{a}	$79.37~\pm~7.23^a$	74.04 ± 9.73^{a}	78.67 ± 9.83^{a}
ALT (UI/L)	$53.25\pm8.10^{\text{a}}$	$16.93\pm4.58^{\text{c}}$	48.52 ± 7.11^{a}	30.09 ± 5.62^b
AST/ALT	1.5 ^a	4.7 ^c	1.5 ^a	2.6 ^b
Títulos de Ac1 (14d)	$4.50\pm1.82^{\text{a}}$	$4.67\pm1.75^{\text{a}}$	$4.50\pm1.22^{\mathrm{a}}$	$4.73\pm1.63^{\text{a}}$
Títulos de Ac (35d)	5.00 ± 0.89^{a}	5.83 ± 1.03 ^a	5.35 ± 0.52^{a}	5.33 ± 0.98^{a}

Media + error estándar

Medias con la misma letra en la misma línea no son significativamente diferentes (Dunnet > 0.05) GGT, gama glutamil transpeptidasa; AST, aspartato amino transferasa; ALT, alanino amino transferasa.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

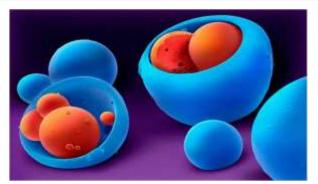
FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN



EFECTO DE LOS ÁCIDOS ORGÁNICOS ENCAPSULADOS SOBRE LAS VARIABLES PRODUCTIVAS EN POLLOS DE ENGORDA QUE CONSUMIERON ALIMENTO CON OCRATOXINA

Del Río-García JC*, Chaparro FJ, Marín FE, Hernández RJO Méndez AA

METODOLOGÍA / DISEÑO EXPERIMENTAL


Se utilizaron 120 aves de un día de edad, estirpe Ross mixtos para aplicar 4 tratamientos con tres repeticiones cada uno. El trabajo experimental tuvo una duración de 28 días.

Agua y alimento "ad libitum"

Sin Antibiótico promotor de crecimiento

Grupo	Tratamientos
С	Control (Sin Ac. Org/ OA/ APC)
Ac	Ácidos orgánicos (fumárico- sorbico-fórmico-cítrico)
OA	Ocratoxina "A" (200 μg/kg alimento)
AcOA	Mezcla de Ac. Orgánicos + ocratoxina "A"

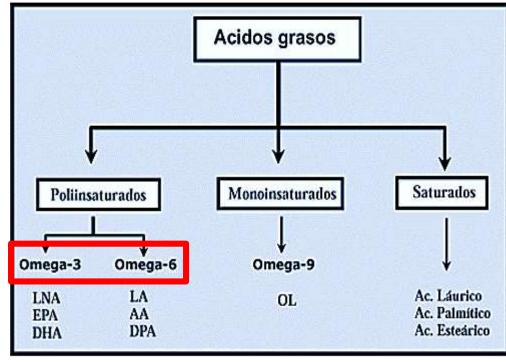
Índice morfométrico promedio en el pollo de engorda

	PROVENTRÍCULO			PROVENTRICULO			IN ⁻	INTESTINO			HÍGADO	
Tto	Promedio	Error estándar	p<0.05	Promedio	Error estándar	p<0.05	Promedio	Error estándar	p<0.05	Promedio	Error estándar	p<0.05
C	2.60	0.02	b	3.00	0.11	ab	5.89	0.11	b	2.56	0.12	а
Ac	2.74	0.07	а	3.15	0.14	а	6.39	0.10	а	2.49	0.17	а
OA	2.27	0.02	С	2.41	0.14	С	5.03	0.16	С	3.27	0.18	b
Ac OA	2.56	0.04	b	2.99	0.18	b	5.68	0.27	b	2.66	0.18	ab

	BAZO				BF				
Tto	Promedio	Error estándar	p<0.05		Promedio	Error estándar	p<0.05		
С	1.20	0.02	а		1.78	0.18	а		
Ac	1.16	0.08	а		1.78	0.28	а		
OA	0.62	0.05	С		0.764	0.22	C		
AcOA	1.11	0.06	b		0.959	0.27	b		

C (control negativo); Ac (ácidos orgánicos); OA (ocratoxina "A"); AcOA (ácidos orgánicos + ocratoxina)

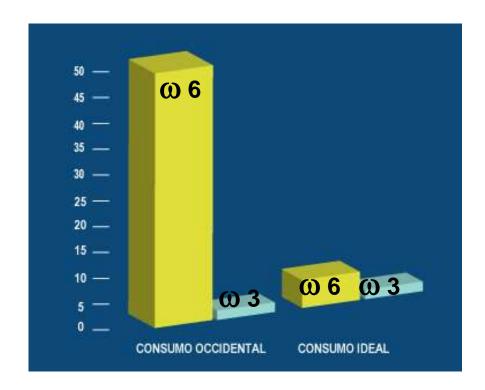
Literales diferentes en cada variable indican diferencia estadística entre las medias al compararlas con la prueba de Tukey (p<0.05)


Significado del efecto de los ácidos grasos poliinsaturados sobre la proliferación de linfocitos de gallina y la concentración de inmunoglobulina G en suero y yema de huevo

Dietary polyunsaturated fatty acids significantly affect laying hen lymphocyte proliferation and immunoglobulin G concentration in serum and egg yolk

Y. W. Wang, G. Cherian, H. H. Sunwoo, and J. S. Sim

Can. J. Animal Sci, 2000.



Antecedentes

OMEGA 6	OMEGA 3
Proinflamatoria	Antiinflamatoria
Infiltración células inflamatorias	Remueve células inflamatorias
Liberan radicales libres	Reduce radicales libres
Daño a las membranas	Restablece integridad celular

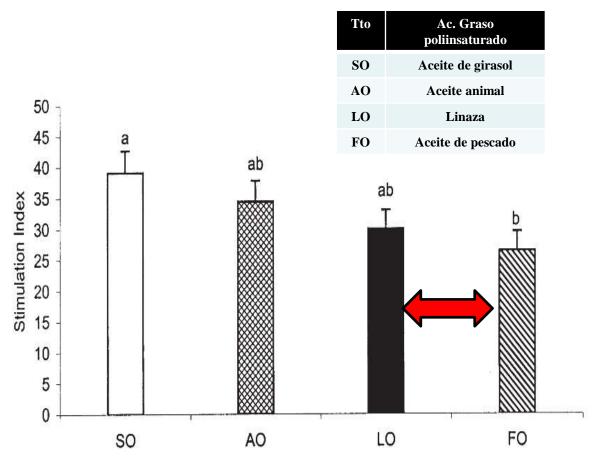
(Dommels et al., 2002; Mills et al, 2005; Schmitz y Ecker, 2008; Serhan y Chiang, 2008)

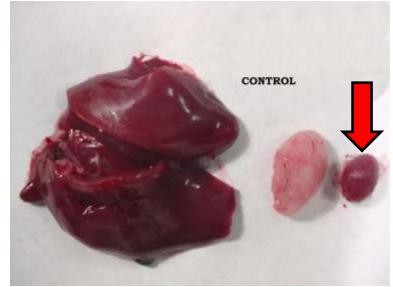
Materiales y Métodos

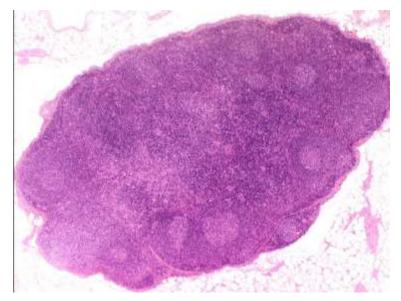
Gallinas ponedoras Leghorn White 24 semanas de edad. Las aves fueron asignadas aleatoriamente a cuatro tratamientos dietéticos con 12 aves cada uno.

Todas las aves fueron alojadas en jaulas con dos aves por jaula.

Alimento y agua *ad libitum*. Se proporcionó luz continua durante todo el período experimental para mantener una alta producción huevo.

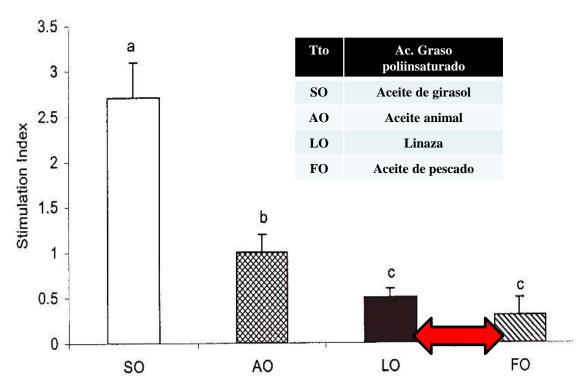

Tto	Ac. Graso poliinsaturado	ω-6	ω-3
so	Aceite de girasol	65 %	0 %
AO	Aceite animal	100 %	0 %
LO	Linaza	14 %	57 %
FO	Aceite de pescado	0 %	100 %


Se añadieron a 5%. Isocalóricas e isonitrogenadas

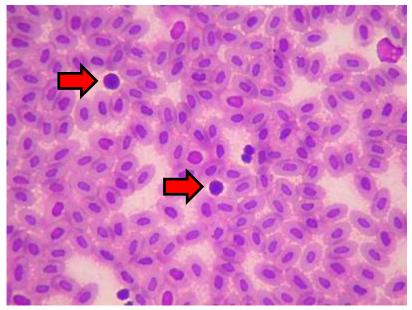


Resultados

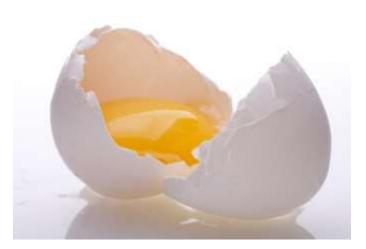
Efecto de la dieta sobre el index de estimulación de linfocitos esplénicos con Con-A



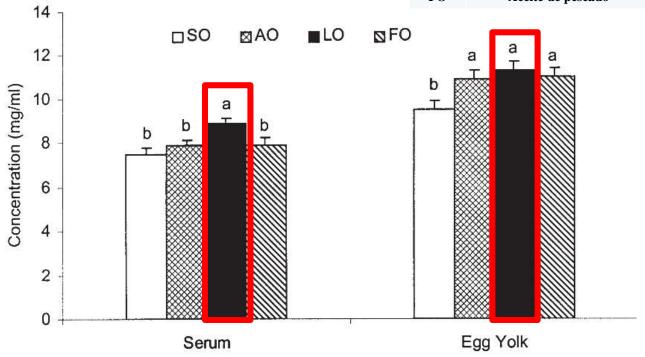



Diferentes literales indican diferencia estadística (p<0.05)

Efecto de la dieta sobre el index de estimulación de linfocitos sanguíneos con Con-A



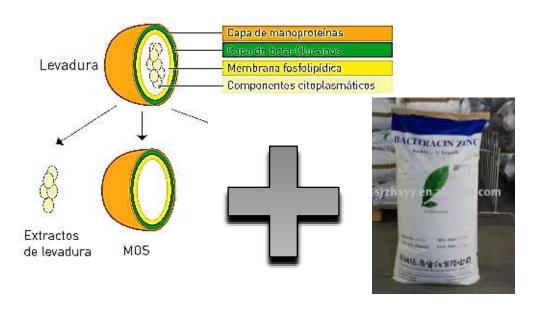
Diferentes literales indican diferencia estadística (p<0.05)



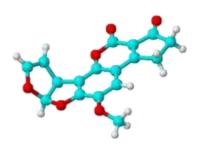
Efecto de la dieta sobre la concentración de IgY en suero y yema

ado	Ac. Graso poliinsaturado	Tto
	Aceite de girasol	SO
	Aceite animal	AO
	Linaza	LO
	Aceite de pescado	FO

Diferentes literales indican diferencia estadística (p<0.05)


Comportamiento productivo y respuesta inmune de pollos alimentados con dietas sorgo-soya con y sin aflatoxina y paredes celulares de levadura (Saccharomyces cerevisiae)

Gabriela Gómez Verduzco, Arturo Cortés Cuevas, Carlos López Coello, José Arce Menocal, Carlos Vásquez Pelaez, Ernesto Avila Gonzáleza Rev. Tec.Pec Mex. 2009


Las paredes celulares de levaduras de Saccharomyces cerevisiae (PCL) pueden ser una alternativa a los APC. Los oligosacáridos de las PCL de Saccharomyces cerevisiae en su mayoría son:

-glucanos y mananooligosacáridos (MOS). El porcentaje de oligosacáridos presentes en las PCL es del 85 al 90 % siendo el 10 o el 15 % restante proteínas.

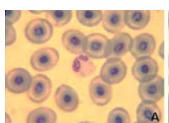
EL objetivo de este estudio es evaluar la capacidad de absorción y de inmunoestimulante de las PCL en aves que consumieron alimento con aflatoxinas

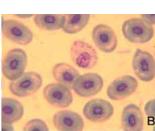
RESULTADOS

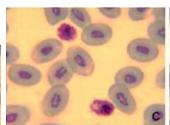
Efecto de la adición de paredes celulares de levaduras y Bacitracina zinc en dietas de pollos de engorda de 0-21 y 0-49 días de edad

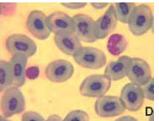
,		Treatments						
Variable	Age (days)	Control	YCW*	AGP**	YCW* +AGP**	Prob. F		
Peso (g)	21	713±6.3b	732±3.5 ^{ab}	720±18.5 ^{ab}	750±3.8ª	0.000		
(9)	49	3040±24.0a	3137±47.9ab	3091±7.3ab	3160±57.0a	0.05		
Mean		1876±520b	1935±538ab	1905±530ab	1955±539 ^a			
0.1 ()	21	959±17.23a	1025±18.98a	995±13.28a	969±16.38ab	0.000		
CA (g)	49	5914±22.50b	6045±88.81b	5777±47.55b	5955±62.46b	0.063		
Mean		3436±1108a	3535±1123ª	3386±1067a	3461±1115 ^a			
	21	1.33±0.02a	1.4±0.02a	1.38±0.02a	1.35±0.05 ^a	0.509		
IC (g/g)	49	1.94±0.02 ^b	1.92±0.04b	1.86±0.01b	1.88±0.03 ^b	0.298		
Mean		1.63±0.14 ^a	1.67±0.12a	1.62±0.11ª	1.62±0.12a			

YCW:PCL; AGP:Bacitracina zinc




RESULTADOS

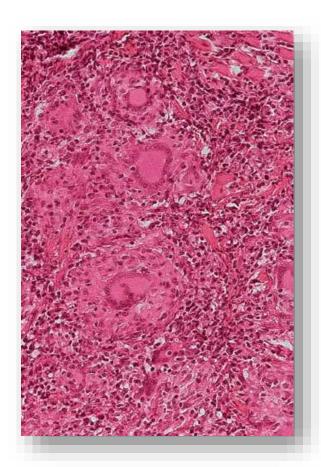

Indice hematológico en pollos de engorda con pared de levadura y Bacitracina zinc

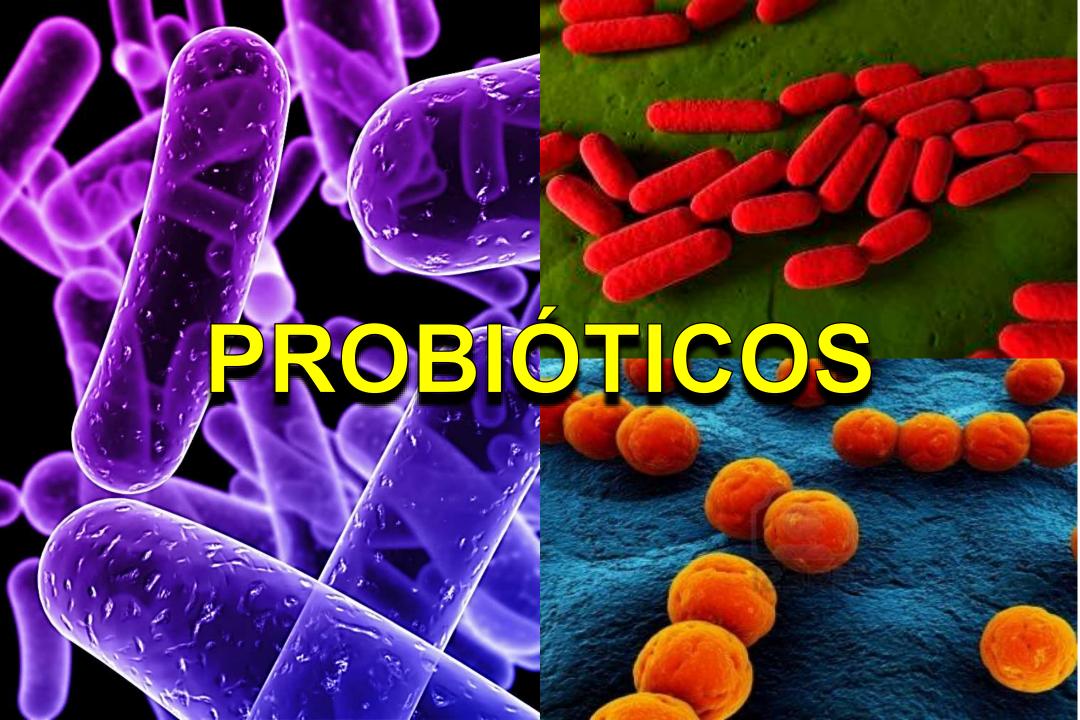

,		98	Treat	ments	25		
Cell	Day	Control	YCW*	AGP**	YCW*+AGP**	SE	Prob. F
TO AN AN MARKET MARKET	8	61.9	64.9	61.8	65.1		
Linfocitos %	17	54.9	65.0	65.0	69.9		
	8 17 24 Average filos % 17 24 Average ofilos % 8 17 24 Average los % 8 17 24 Average average 8 17 24 Average citos % 17 24 Average	55.0	69.2	66.2	67.3		
	Average	58.8c	64.4 ^a	66.2 ^b	67.4ª	3.15	0.0001
11-4461 0/	8	22.2	20.7	21.6	20.7		
Heterófilos %	17	24.6	22.0	22.4	19.1		
	24	28.8	19.4	20.8	20.1		
	Average	25.2ª	20.7bc	20.8 ^b	20.0°	2.29	0.0001
Eosinófilos %	8	1.8	1.2	2.1	1.6		
LUSITIOIIIUS 70	17	1.6	1.1	0.7	0.3		
	24	1.6	0.8	0.7	0.7		
	Average	1.6a	1.0 ^b	0.7b	0.9 ^b	0.70	0.0001
Basófilos %	8	3.3	2.3	3.4	2.3		
Dasomos 70	17	2.4	1.8	2.2	1.3		
	24	3.2	1.1	1.3	1.7		
	Average	3.0a	1.7 ^b	1.3 ^c	1.8 ^b	0.87	0.0001
	8	10.8	10.9	11.1	10.3		
Monocitos %	17	12.0	10.1	9.7	9.3		
	24	11.4	9.7	11.0	10.2		
	Average	11.4 ^a	10.2 ^b	11.0 ^b	10.0 ^b	1.39	0.002

YCW: Pared de Levadura; AGP: Bacitracina zinc

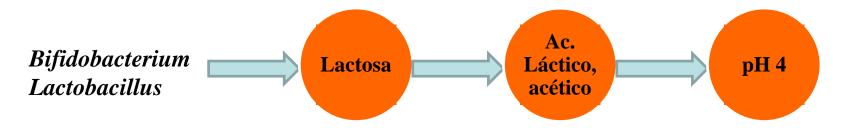


RESULTADOS

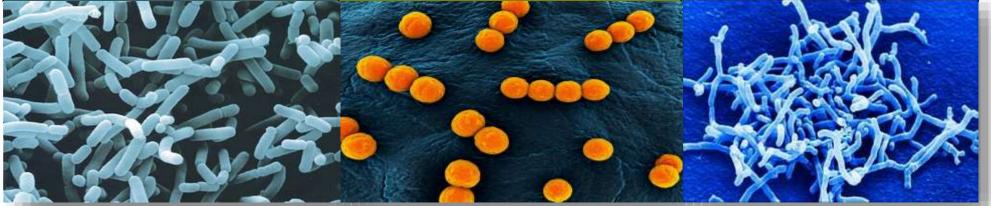

Efecto de la parede de levadura y aflatoxina sobre la respuesta inmune humoral y celular


	NDV HI ^{log2+}	Tracheal IgAng/m	I DBH++mm
YCW*			
Absent	5.0 ^{ab}	0.165	0.2867 ^b
Present	5.7a	0.193	0.4808a
AFB1**			
Absent	5.05ab	0.151	0.3075a
Present	4.90 ^b	0.193	0.2383b
SE	0.19	0.01	0.04
		Source of variation	n
YCW	0.05	0.584	0.001
AFB1	0.093	0.188	0.002
YCW + AFB	1 0.010	0.591	0.068

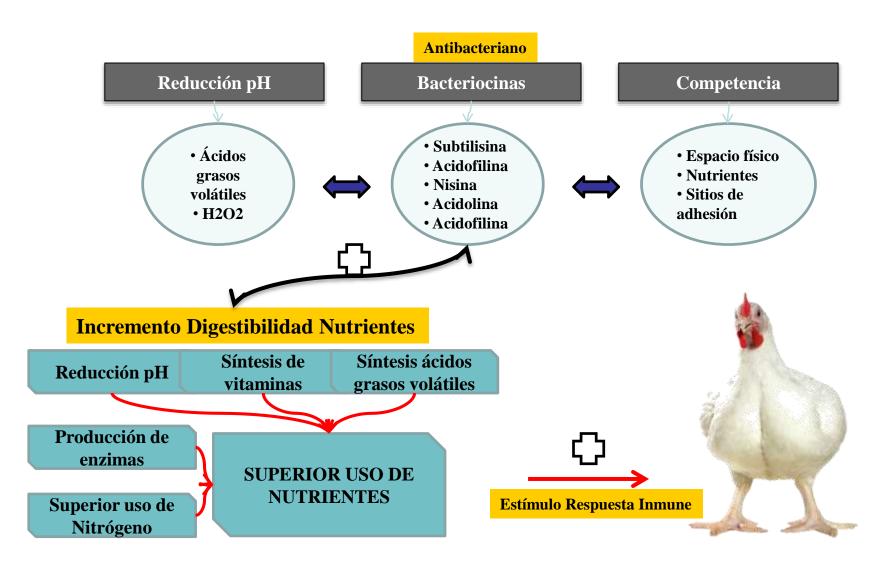
YCW: Pared de Levadura; AFB1: Aflatoxina B1 NDV HI log2: Titulos Ac's vs vacuna NewCastle DBH: Respuesta inmune celular intradermica



LOS PROBIÓTICOS


Un probiótico se define como "un suplemento alimenticio microbiano vivo que beneficia al animal huésped mediante el mejoramiento de su equilibrio microbiano intestinal". (Yegani, 2010)

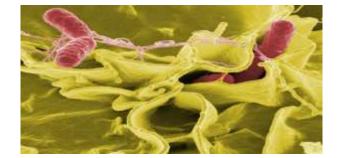
El papel más importante de las bacterias probióticas es actuar en resistencia en contra de la colonización de agentes exógenos, patógenos potenciales.



Bacterias ácido lácticas usadas como probióticos

Lactobacillus	Streptococcus	Bifidobacterium
L. acidophilus	S. cremoris	B. bifidum
L. casei	S. salivarius subsp. thermophilus	B. adolescentis
L. delbrueckii subsp. bulgaricus	S. faecium	B. animalis
L. brevis	S. diacetylactis	B. infantis
L. cellobiosus	S. intermedius	B. longum

Mecanismos de Acción de los Probióticos


Prevention of Salmonella Typhimurium colonization and organ invasion by combination treatment in broiler chicks

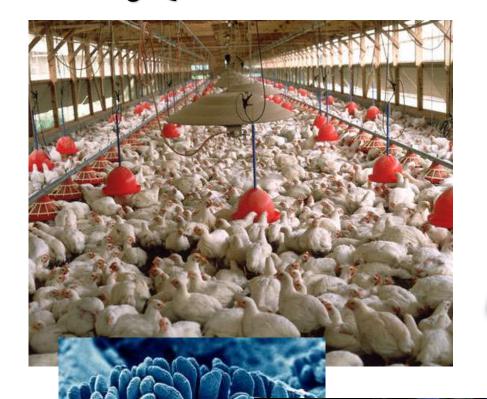
L. Revolledo, C. S. A. Ferreira, and A. J. P. Ferreira Poultry Sci. 2009

Table 2. Sera and intestinal fluid IgA levels in groups of chicks treated on d 1 with CE product and/or fed with either experimental probiotic or β-glucan, or both, from d 1 onwards

6.0	IgA sera (ng/mL)				IgA intestinal fluid (ng/mL)					
Treatments		Second week	Third week	Fourth week	First week	Second week	Third week	Fourth week		
1	CE ¹	$502.94^{a} \pm 26.07$	$440.35^{\mathrm{b}} \pm 16.99$	$351.77^{\text{b}} \pm 11.10$	$16.07^{ m e} \pm 6.12$	$239.08^{\circ} \pm 11.25$	$414.46^{ m b}\pm12.67$	$330.29^{\circ} \pm 12.99$		
2	LEB^2	481.94° ± 17.07	$321.01^{\circ} \pm 19.26$	$355.33^{\circ} \pm 18.05$	$29.14^{ m d} \pm 6.46$	$211.83^{\circ} \pm 10.98$	$398.97^{\circ} \pm 14.36$	$260.83^{e} \pm 15.77$		
3	G^3	$439.70^{\mathrm{b}} \pm 24.18$	$340.36^{\circ} \pm 7.24$	$258.97^{ m d} \pm 27.88$	$17.04^{\circ} \pm 7.31$	$297.68^{b} \pm 10.76$	$330.77^{\mathrm{d}} \pm 27.19$	$240.45^{e} \pm 11.25$		
4	CE + LEB	$418.13^{\mathrm{b}} \pm 7.07$	$325.62^{c} \pm 11.23$	$317.82^{c} \pm 13.41$	$29.39^{d} \pm 8.34$	$196.34^{\rm d} \pm 16.34$	$291.41^{e} \pm 14.79$	$164.05^{g} \pm 18.61$		
5	CE + G	$453.02^{a} \pm 10.44$	$335.53^{\circ} \pm 9.57$	$329.35^{\circ} \pm 15.98$	$34.99^{ m d} \pm 10.27$	$150.90^{\rm e} \pm 11.76$	$271.42^{e} \pm 15.29$	$346.05^{\mathrm{b}} \pm 14.93$		
6	CE + LEB + G	$429.39^{b} \pm 10.22$	$247.42^{\rm e} \pm 11.06$	$305.83^{ m d} \pm 32.04$	$133.44^{a} \pm 15.10$	$365.71^{\text{a}} \pm 9.57$	$399.55^{\circ} \pm 10.12$	$373.18^{a} \pm 9.24$		
7	LEB + G	$415.68^{\mathrm{b}} \pm 25.69$	$424.34^{\mathrm{b}}\pm16.05$	$439.04^{\text{a}} \pm 28.66$	$69.45^{\mathrm{b}} \pm 12.65$	$383.04^{\rm a} \pm 8.52$	$430.66^{a} \pm 14.81$	$287.29^{\rm d} \pm 8.76$		
8	NC^4	$359.68^{\circ} \pm 31.34$	268 73 ^d + 15 26	395 49 ^b + 22 35	13 46e + 7 41	156 80° + 19 98	$330.77^{d} + 26.23$	$208.77^{\text{f}} + 16.34$		
9	PC^5	$493.02^{\mathrm{a}}\pm12.25$	$460.54^{\mathrm{a}} \pm 15.43$	$330.29^{\rm h}\pm17.02$	$41.39^{c} \pm 9.34$	$193.47^{ m d}\pm10.77$	$398.97^{c} \pm 17.04$	$350.76^{b} \pm 19.87$		

^{a-h}Different superscript letters associated with mean values in the same column indicate significant differences between treatments ($P \le 0.05$).

¹CE = competitive exclusion.

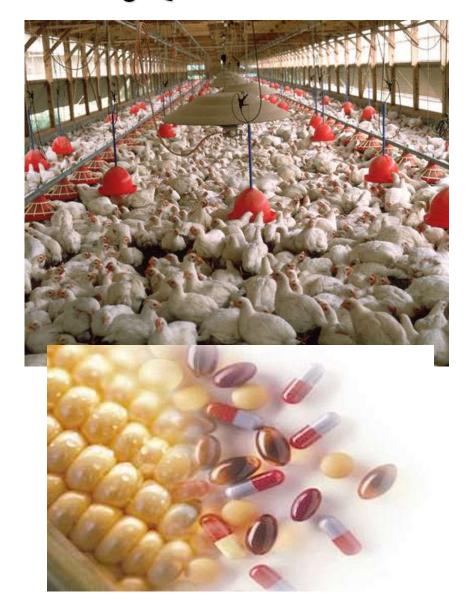

²LEB = experimental probiotic.

 $^{^{3}}G = \beta$ -glucan.

⁴NC = negative control.

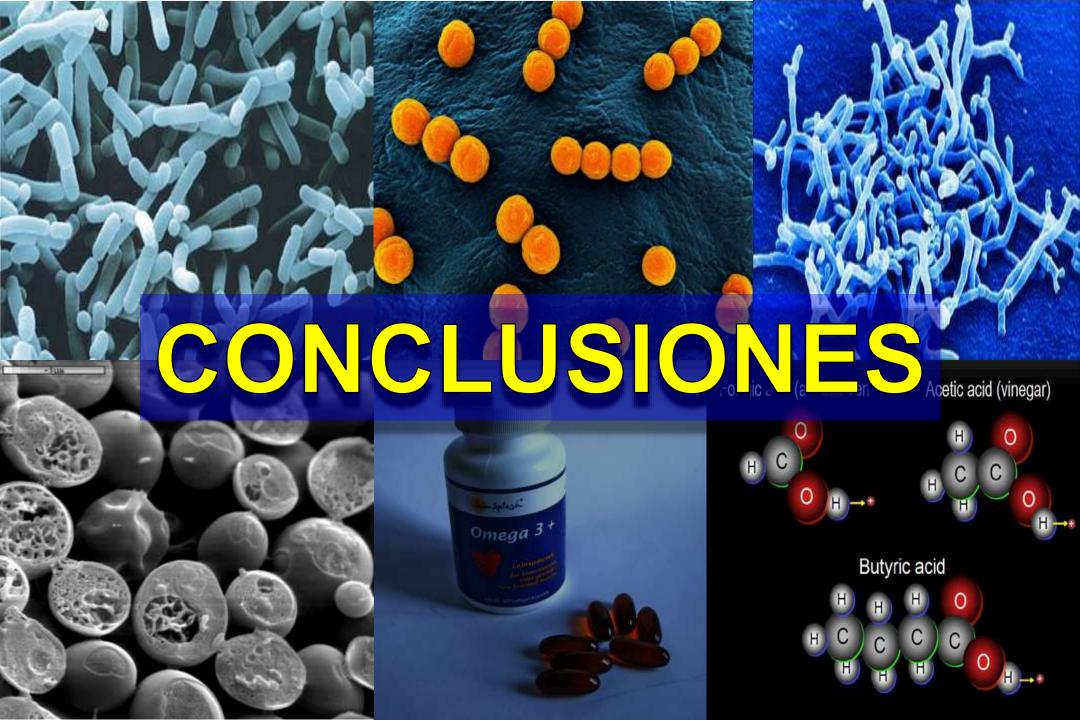
 $^{^{5}}PC = positive control.$

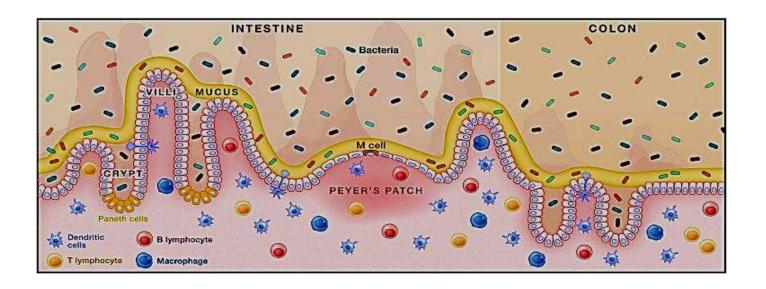
¿ QUE OTROS INMUNOMODUDALADORES ?

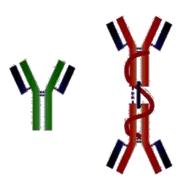


CAPTURANTES

ANTIOXIDANTES

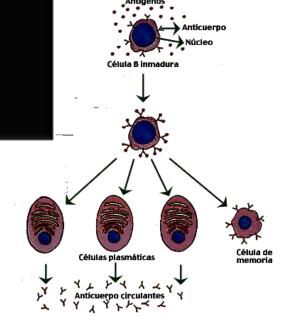

¿ QUE OTROS INMUNOMODUDALADORES?




1.- MODULACIÓN: INFLAMACIÓN-INMUNIDAD

Respuesta inflamatoria e inmune Resistencia del hospedador Alteración en la respuesta vacunal Alteración a las infecciones de campo

2.- INMUNONUTRICIÓN



IgG IgA

ESTIMULA UNA RESPUESTA
SISTÉMICA
Tejido linfoide asociado a mucosas
Digestiva
Respiratoria
Reproductiva
Urinaria
Piel

IL-1 β IL-6 FNT- α

3.- INMUNONUTRICIÓN

BIOSEGURIDAD PROGRAMAS DE VACUNACIÓN PROGRAMAS DE DESPARASITACIÓN LIMPIEZA ETC, ETC

GRACIAS;

Dr. MVZ Juan Carlos Del Río García delriog@unam.mx / mcjcrg@gmail.com